A Comprehensive Review of Surface Modification Techniques for Enhancing the Biocompatibility of 3D-Printed Titanium Implants

Author:

Long Shuai1ORCID,Zhu Jiang1,Jing Yiwan1,He Si1,Cheng Lijia1ORCID,Shi Zheng1

Affiliation:

1. Clinical Medical College & Affiliated Hospital, School of Basic Medical Sciences, Mechanical Engineering College, Chengdu University, Chengdu 610106, China

Abstract

The advent of three-dimensional (3D) printing technology has revolutionized the production of customized titanium (Ti) alloy implants. The success rate of implantation and the long-term functionality of these implants depend not only on design and material selection but also on their surface properties. Surface modification techniques play a pivotal role in improving the biocompatibility, osseointegration, and overall performance of 3D-printed Ti alloy implants. Hence, the primary objective of this review is to comprehensively elucidate various strategies employed for surface modification to enhance the performance of 3D-printed Ti alloy implants. This review encompasses both conventional and advanced surface modification techniques, which include physical–mechanical methods, chemical modification methods, bioconvergence modification technology, and the functional composite method. Furthermore, it explores the distinct advantages and limitations associated with each of these methods. In the future, efforts in surface modification will be geared towards achieving precise control over implant surface morphology, enhancing osteogenic capabilities, and augmenting antimicrobial functionality. This will enable the development of surfaces with multifunctional properties and personalized designs. By continuously exploring and developing innovative surface modification techniques, we anticipate that implant performance can be further elevated, paving the way for groundbreaking advancements in the field of biomedical engineering.

Funder

Natural Science Foundation of Sichuan Province, China

Medical Scientific Research Project of Chengdu City, China

Sichuan Provincial Science and Technology Foundation

education department of Sichuan Province, China

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3