Low-Temperature H2/D2 Plasma–W Material Interaction and W Dust Production for Fusion-Related Studies

Author:

Marascu Valentina1ORCID,Stancu Cristian1,Acsente Tomy1,Bonciu Anca2ORCID,Constantin Catalin13,Dinescu Gheorghe1

Affiliation:

1. Low Temperature Plasma Department, National Institute for Laser, Plasma and Radiation Physics, 409 Atomistilor Street, 077125 Magurele, Romania

2. FOTOPLASMAT Department, National Institute for Laser, Plasma, and Radiation Physics, 077125 Magurele, Romania

3. Faculty of Physics, University of Bucharest, 405 Atomistilor Street, 077125 Magurele, Romania

Abstract

In this paper, results concerning hydrogen and deuterium plasma (RF, 13.56 MHz) interactions with tungsten surfaces, were reported. We used the Hollow-Cathode (HC) configuration for plasma–tungsten surface interaction experiments, along with the collection of tungsten dust, at different distances. Further on, the plasma-exposed tungsten surfaces and the collected dust were morphologically analyzed by contact profilometry, scanning electron microscopy, and energy dispersive spectroscopy measurements, along with chemical investigations by the X-ray photoelectron spectroscopy technique. The results showed that exposing the tungsten surfaces to the hydrogen plasma induces surface erosion phenomena along with the formation of dust and interconnected W structures. Herein, the mean ejected material volume was ~1.1 × 105 µm3. Deuterium plasma facilitated the formation of blisters at the surface level. For this case, the mean ejected material volume was ~3.3 × 104 µm3. For both plasma types, tungsten dust within nano- and micrometer sizes could be collected. The current study offers a perspective of lab-scaled plasma systems, which are capable of producing tungsten fusion-like surfaces and dust.

Funder

European Union via the Euratom Research and Training Programme

Romanian Ministry of Research

Romanian National Core Program

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3