A Facile Nitriding Approach for Improved Impact Wear of Martensitic Cold-Work Steel Using H2/N2 Mixture Gas in an AC Pulsed Atmospheric Plasma Jet

Author:

Guo Jhao-YuORCID,Kuo Yu-LinORCID,Wang Hsien-PoORCID

Abstract

In this study, we propose a rapid plasma-assisted nitriding process using H2/N2 mixture gas in an atmospheric pressure plasma jet (APPJ) system to treat the surface of SKD11 cold-working steel in order to increase its surface hardness. The generated NH radicals in the plasma region are used to implement an ion-bombardment for nitriding the tempered martensite structure of SKD11 within 18 min to form the functional nitride layer with an increased microhardness around 1095 HV0.3. Higher ratios of H/E and H3/E2 were obtained for the values of 4.514 × 10−2 and 2.244 × 10−2, referring to a higher deformation resistance as compared with the pristine sample. After multi-cycling impact tests, smaller and shallower impact craters with less surface oxidation on plasma-treated SKD11 were distinctly proven to have the higher impact wear resistance. Therefore, the atmospheric pressure plasma nitriding process can enable a rapid thermochemical nitriding process to form a protective layer with unique advantages that increase the deformation-resistance and impact-resistance, improving the lifetime of SKD11 tool steel as die materials.

Funder

Ministry of Science and Technology, Taiwan

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

Reference47 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3