Material Application of a Transformer Box: A Study on the Electromagnetic Shielding Characteristics of Al–Ta Coating Film with Plasma-Spray Process

Author:

Hung Fei-ShuoORCID

Abstract

In this study we present the results of two experiments. In the first one, a Ta–Al–SS (stainless steel (SS)) multilayer coating structure was prepared using plasma spraying equipment to investigate the coating structure and interface properties. In the second one, Ta–Al on multilayer glass was prepared using the sputtering process to measure the thickness effect of thin film on electromagnetic wave shielding (EMI) characteristics and on the design of high-power switchboard covers. According to the experimental results, the multilayer structure of Ta–Al on SS improves the mechanical properties of a stainless steel plate by enhancing the explosion-proof property. An appropriate thickness of the plasma-sprayed pure aluminum layer can increase the adhesion to the stainless steel substrate and buffer the stress effect. After heat treatment (annealing), the Ta–Al–SS multilayer structural characteristics are excellent and suitable for shielding effects at different temperatures and humidity, which can be used as a reference for the engineering application of communication rooms and base power stations. According to EMI test of multi-coated glass (Ta–Al–glass), by increasing the thickness of Ta layer, we cannot effectively improve full-frequency EMI shielding with improved shielding at low-mid frequency condition. In addition, the Ta–Al interface formation of an Al–Ta–O compound layer can improve the adiabatic effect to reduce the thermal conductivity.

Funder

Department of Leisure, Recreation and Tourism Management, Southern Taiwan University of Science and Technology

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3