Improvement of Structures and Properties of Al2O3 Coating Prepared by Cathode Plasma Electrolytic Deposition by Incorporating SiC Nanoparticles

Author:

Li Xianjia,Li Zhi,Zhou Rui,Wang Bin,Wang Yu,Li Husheng,He Tao,Ma Yushan,Ge Tao,Fan WeiORCID,Bai Yu

Abstract

A serious issue in the preparation of Al2O3 coatings by cathode plasma electrolytic deposition (CPED) is that the coatings have a porous structure, which is detrimental to their protective performance. Therefore, to address this problem, SiC nanoparticles are incorporated into the Al2O3 coating in this study. A series of Al2O3–SiC composite coatings are efficaciously prepared on the surface of 316L stainless steel by CPED. The microstructures, compositions and phase components of the composite coatings are characterized; the electrochemical corrosion resistance and tribological behavior are evaluated; and the mechanism of SiC nanoparticles in the coating formation process is discussed in detail. The results indicate that the Al2O3 coating prepared by CPED consists of α-Al2O3 and γ-Al2O3, and the former is the main crystalline phase. With the incorporation of SiC nanoparticles in the coating, the content of α-Al2O3 gradually decreases, almost disappearing, accompanied by an increase in γ-Al2O3 as the main crystalline phase. The incorporation of SiC nanoparticles significantly reduces the surface irregularity and roughness of Al2O3 coatings and remarkably improves the corrosion resistance and wear resistance of the Al2O3 coatings. The improvement in corrosion resistance and anti-wear properties can be explained by the fact that the SiC nanoparticles effectively weaken electrical breakdown and increase the compactness of the coatings.

Funder

National Natural Science Foundation of China

National Key R&D Program of China

Collaborative Innovation Center of Advanced Control Valve Project

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3