Comparison of Various Thin-Film-Based Absorber Materials: A Viable Approach for Next-Generation Solar Cells

Author:

Mamta ,Maurya Kamlesh Kumar,Singh Vidya NandORCID

Abstract

Thin-film solar cells are simple and affordable to produce, but their efficiency is low compared to crystalline-silicon solar cells, and needs to be improved. This study investigates the photovoltaic performance of different absorber materials (CdTe, CIGS, Sb2Se3, and CZTS) with simple structure Au/absorber/CdS/ITO. The research uses the SCAPS (Solar Cell Capacitance Simulator), a mathematical model based on Poisson and continuity equations. The impact of various parameters on cell performance, such as absorber layer thickness, acceptor density, electron affinity, back contact work function, and temperature, are examined. As per the simulation results, an absorber thickness of 4 µm is suitable for achieving the maximum efficiency for all the absorber materials. The optimized acceptor density for CdTe/CIGS/ Sb2Se3 and CZTS is taken as 1016 cm−3 and 1017 cm−3, respectively. The back contact work function and device temperature were set to be 5.1 eV and 300 K, respectively, to achieve excellent performance. Among all the absorber materials, the highest efficiency of 28.2% was achieved for CZTS. The aim is to highlight the various absorber layers’ performances by optimizing the device parameters. The obtained results can be used in solar energy harvesting applications due to the improved performance characteristics.

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3