Fast Calculation Method for Predicting the Morphology of Steady-State Ablation

Author:

Wang XiaobinORCID,Jiang PengORCID,Tang Yujian,Cheng Pengfei,Zhang Weixu

Abstract

Predicting the surface morphology of materials during steady-state ablation is important in rocket motor nozzles and the heat shields of vehicles performing atmospheric re-entry. When designing ablative materials, a high number of calculations is required for analyzing surface morphology. To effectively design these materials and reduce the number of experiments, a fast, effective, and simple calculation method is required. Although a fundamental theory for ablation has been established, quick and effective prediction of the morphology of the composites remains a challenge. In this study, we propose a fast, effective, and simple numerical calculation method to predict the surface morphology of steady-state ablation based on the geometric characteristics of the materials. The results obtained in this study were consistent with the experimental observations. The calculation time was significantly reduced. In addition, our method was found to be useful for analyzing the physical and chemical properties and surface roughness of ablative materials.

Funder

National Natural Science Foundation of China

Innovative Scientific Program of China National Nuclear Corporation

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3