Processing of Spark Plasma Sintered Fe Alloy and Enhancing Its Surface Properties by AlCrN Monolayer Coating by Cathodic Arc Plasma Physical Vapor Deposition Process

Author:

Kumar T. SampathORCID,Annamalai A. RajaORCID,Srikanth MutheORCID,Jen Chun-PingORCID

Abstract

The current investigation observes the outcome of enhancing the surface properties by AlCrN monolayer coating using the cathodic arc plasma method on the Fe–Cu–C–Mo alloys. The compacts were sintered in spark plasma sintering (SPS) with the heat transfer rate of 100 °C/min at 1120 °C for 5 minutes. The Fe–2Cu–0.8C–0.6Mo sample has the highest relative sintered density (97.20%), hardness (96 HRB), and ultimate tensile strength (1000 MPa) compare with the other sintered compacts. AlCrN coating was deposited on Fe, Fe–2Cu, Fe–2Cu–0.8C, Fe–2Cu–0.8C–0.2Mo, Fe–2Cu–0.8C–0.4Mo, and Fe–2Cu–0.8C–0.6Mo samples, using the cathodic arc plasma–physical vapor deposition (CAP-PVD) process. The coated compact samples’ metallography images were examined using a Scanning Electron Microscope (SEM); the Fe–2Cu alloy sintered sample has obtained a uniform structure with high density and a smaller amount of corrosion penetration rate (0.6579 mmpy) as compared to the counterparts. The phase formed in the AlCrN coating was analyzed using the X-ray Diffraction (XRD). The Fe–2Cu–0.8C–0.6Mo coated compact sample exhibited higher hardness (1134.85 HV0.3) than the other coated compact samples. The Fe–2Cu–0.8C–0.2Mo coated compact sample has proven better corrosion resistance compared to the other coated compact sample.

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Mechanical testing of spark plasma sintered materials: A review;9TH NATIONAL CONFERENCE ON RECENT DEVELOPMENTS IN MECHANICAL ENGINEERING [RDME 2021];2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3