Preparation of Nanocellulose Whisker/Polyacrylamide/Xanthan Gum Double Network Conductive Hydrogels

Author:

Du Zhiwei1,Wang Yalei1,Li Xiurong1

Affiliation:

1. College of Resources, Environment and Materials, Guangxi University, Nanning 530004, China

Abstract

Hydrogels’ poor mechanical and recovery characteristics inhibited their application as a plastic deformable three-dimensional cross-linked network polymer with electrical properties for intelligent sensing and human motion detection. Cellulose has also been added to the hydrogel to enhance its mechanical properties. The hydrogel has been enhanced this way, and the double-network hydrogel has superior recovery and mechanical capabilities. This study used the traditional free radical polymerization method to prepare double-mesh hydrogels, with polyacrylamide as the backbone network, xanthan gum double-helix structure, and Al3+ complex structure as the second cross-linked network, and endowing the hydrogels with good mechanical recovery and mechanical properties. Adding cellulose nanowafers (CNWs) improved the mechanical properties of the hydrogels. The hydrogel could detect body movements and various postures in the same environment. Moreover, the hydrogel has excellent recovery, mechanical properties, and tensile strain; the maximum fracture stress is 0.14 MPa, and the maximum strain is 707.1%. In addition, Fourier infrared spectroscopy (FTIR) of xanthan gum and Xanthan gum—Al3+ were analyzed, and thermogravimetric analysis (TGA) and LCR bridge were used to analyze the properties of hydrogels. Notably, hydrogel-based wearable sensors have been successfully constructed to detect human movement. Its mechanical properties, sensitivity, and wide range of properties make hydrogel a great potential for various applications in wearable sensors.

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3