Abstract
Nitrogen was implanted into 316L stainless steel by plasma immersion ion implantation (PIII) for surface modification. Due to nitrogen implantation, the corrosion resistance and interfacial contact resistance (ICR) were improved compared to the bare 316L stainless steel. The improved corrosion resistance was attributed to the formation of the expanded austenite phase (γN). The phase formation was found to be closely related to the evolution of the (111) plane texture. The formation of γN is strongly related to applied bias voltages. When bias voltages were increased to 15 kV, the γN phase was partially decomposed due to the formation of excessive nitride, including the CrN phase. For the ICR, increased crystallite size is effective in reducing contact resistance, which might arise from a reduced number of the grain boundary with electron scattering. In particular, the applied bias voltage of 10 kV was the most effective to both corrosion resistance and ICR, and its performance satisfies the demand for a bipolar plate in the Polymer Electrolyte Membrane Fuel Cells (PEMFC).
Funder
Korea Institute of Industrial Technology
Subject
Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献