The Characteristics of Ancient Residence Wood from the Qing Dynasty in Yunnan Province

Author:

Yang Xiaorui1,Li Changzhao1,Wang Liang2,Yang Chunwang1,Zhang Shang3,Gao Jingran4,Qiu Jian4

Affiliation:

1. Yunnan Provincial Key Laboratory of Wood Adhesives and Glued Products, Southwest Forestry University, Kunming 650224, China

2. Jianwei Cultural Heritage Conservation Co., Ltd., Shanghai 200120, China

3. Yunnan Forestry Technological College, Kunming 650224, China

4. International Joint Research Center for Biomass Materials, Southwest Forestry University, Kunming 650224, China

Abstract

This study takes the wooden components of the different parts of the ancient buildings at the site of the Zhuangzishang Conference as the object of study, and investigates the deterioration state of the different wood components. To assess their degree of degradation, the wood anatomy, basic density (BD), maximum water content (MWC), cell wall major components, X-ray diffraction (XRD), infrared spectroscopy (IR), and thermogravimetry (TG) were used to compare the samples of new and old wood from the same species. The window (W) was identified by microscopic characterization as cypress (Cupressus sp.), the footing beam (FB) and the weatherboard (WB) as pine (Pinus spp.), the purlin (P) and the column (C) as Chinses fir (Cunninghamia spp.), and the floor (F) as spruce (Picea sp.). In terms of their physical properties, the old wood had a lower basic density of 2.58%–38.19%, a lower air-dry density of 2.87%–39.81%, and a higher maximum moisture content of 8.52%–41.38% compared to the reference wood. The degradation of the FB, which has been subjected to moisture and sunlight, and the P, which has been subjected to termite damage, was greater than that of their conspecifics. The integrated holocellulose of the ancient wood was 3.34%–16.48% less, and the hemicellulose was 1.6%–21.92% less compared to that of the reference wood, and the lignin was 1.32%–25.07% more. The XRD results showed that the crystallinity of the cellulose was greater in the different species of ancient wood compared to the control wood, which was caused by the decrease in the amorphous zones of the hemicellulose and cellulose in the ancient wood. The IR indicated that the degradation of cellulose and hemicellulose occurred in the old wood of all species, from the new lignin uptake peaks in the UV-exposed W, FB, and WB compared to the control timber. The pyrolytic behavior of the ancient and control timber is mainly related to the degradation of the tree species and the ancient wood holocellulose. These results show that the differences in the wooden components of the different parts of the ancient buildings at the Zhuangzishang Conference site are mainly related to the species of trees used in the components, and are secondly related to the location of the ancient wood members, which provides useful information for the protection and repair of the ancient buildings at the site.

Funder

Yunnan Provincial Natural Science Foundation Special Program

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3