Investigation of Impact of C/Si Ratio on the Friction and Wear Behavior of Si/SiC Coatings Prepared on C/C-SiC Composites by Slurry Reaction Sintering and Chemical Vapor Infiltration

Author:

Zhao Daming12,Cheng Kaifeng23,Chen Baiyang1,Gao Peihu1ORCID,Guo Qiaoqin1ORCID,Cheng Hao2,Naumov Anton4ORCID,Li Qiao2,Kang Wenjie2

Affiliation:

1. School of Materials and Chemical Engineering, Xi’an Technological University, Xi’an 710021, China

2. Xi’an Chaoma Technology Co., Ltd., Xi’an 710025, China

3. School of Materials Science and Engineering, Xi’an Jiaotong University, Xi’an 710079, China

4. Lightweight Materials and Structures Laboratory, Institute of Mechanical Engineering, Materials and Transport, Peter the Great St. Petersburg Polytechnic University, St. Petersburg 195251, Russia

Abstract

Carbon/carbon (C/C)-SiC composite materials have a series of outstanding advantages, such as a light weight, resistance to thermal degradation, excellent friction performance, and good stability in complex environments. In order to improve the wear resistance of the C/C-SiC composite matrix, Si/SiC coatings were prepared by a combination of chemical vapor infiltration and reactive sintering. The wear performance of Si/SiC coatings with different amounts of silicon carbide was investigated. When the carbon silicon ratio in the slurry was 1:3, the SiC particle content in the coating was 93.0 wt.%; the prepared Si/SiC coating exhibited the lowest wear rate of 3.2 × 10−3 mg·N−1·m−1 among the four coatings; and its frictional coefficient was 0.95, which was higher than that of the substrate. As the residual Si content in the coating decreased, the continuity between SiC particles in the coating was improved. Both the high hardness of SiC and the dense coating contributed significantly to enhancing the coating’s wear resistance.

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3