Mechanical Properties and Optimal Mix Design of Phosphogypsum Cement Mineral Admixture Foam Light Soil

Author:

Xu Bin123,Gao Aodong123,Chen Zhouxiang4,Zhou Yingxin4,Lu Kaiji123,Zheng Qi5

Affiliation:

1. Zhong Lu Gao Ke (Beijing) Road Technology Co., Ltd., Beijing 102600, China

2. Research Institute of Highway Ministry of Transport, Beijing 100088, China

3. Research and Development Center of Transport Industry of New Materials, Technologies Application for Highway Construction and Maintenance, Beijing 100088, China

4. Yunnan Communications Investment & Construction Group Co., Ltd., Kunming 650100, China

5. School of Architecture and Design, Hebei Polytechnic Institute, Shijiazhuang 050020, China

Abstract

With the rapid growth of road transportation, the increase in road subgrade and pavement diseases has become a pressing issue, requiring the development of cost-effective filling materials that meet both strength and economic requirements. Foam lightweight soil, as a novel construction material, offers excellent characteristics such as adjustability in density and strength, high fluidity, and self-supporting capabilities. It has been widely utilized in various engineering applications, including road subgrade backfilling and retaining wall fillings. However, the conventional application of foam lightweight soil, predominantly cement-based, has raised concerns about pollution and high energy consumption due to large cement dosages. To address this issue, this study proposes the integration of phosphogypsum, a byproduct of wet-process phosphoric acid production, into foam lightweight soil. Phosphogypsum has a significant annual discharge and accumulation, but its comprehensive utilization rate remains relatively low. The research investigates the combination of phosphogypsum and foam lightweight soil by introducing mineral admixtures such as microsilica and slag powder to improve early strength development and reduce the influence of fluoride impurities on early strength. The optimal mix proportions for two types of foam lightweight soil, namely phosphogypsum cement microsilica foam (PGCF) and phosphogypsum cement slag powder foam (PGCS), were determined based on single-factor tests. The key parameters considered for optimization were water–binder ratio, foam content, and phosphogypsum dosage. The findings indicate that both PGCF and PGCS foam lightweight soil possess superior mechanical properties and thermal conductivity. By incorporating phosphogypsum into the mix, the early strength development of foam lightweight soil is effectively improved. Moreover, with suitable mix proportions, the maximum phosphogypsum dosage can be achieved, demonstrating potential economic and environmental benefits. In conclusion, this research provides valuable insights into the effective utilization of phosphogypsum in foam lightweight soil, offering a promising solution for the challenges associated with phosphogypsum disposal and the demand for sustainable construction materials in highway engineering.

Funder

Key R&D Plan Project of Yunnan Provincial Department of Science and Technology, China

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3