Plasma–Solution Junction for the Formation of Carbon Material

Author:

Niu JiangqiORCID,Chokradjaroen Chayanaphat,Sawada Yasuyuki,Wang XiaoyangORCID,Saito Nagahiro

Abstract

The solution plasma process (SPP) can provide a low-temperature reaction field, leading to an effective synthesis of N-doped graphene with a high N content and well-structured planar structure. However, the interactions at the plasma–solution interface have not been well understood; therefore, it needs to be urgently explored to achieve the modulation of the SPP. Here, to address the knowledge gap, we experimentally determined the physical parameters of the spital distribution in the plasma phase, plasma–gas phase, and gas–liquid phase of the SPP by the Langmuir probe system with modification. Based on the assumption that plasma can act similarly to semiconductors with the Fermi level above the vacuum level, an energy band diagram of the plasma–solution junction could be proposed for the first time. It was observed that the Fermi level of the organic molecule could determine the magnitude of electron temperature in plasma, i.e., benzene produced the highest electron temperature, followed by phenol, toluene, and aniline. Finally, we found that the electron temperature at the interface could induce quenching, leading to the formation of multilayer large-size-domain carbon products. It provided significant evidence for achieving nonequilibrium plasma modulation of carbon nanomaterial synthesis.

Funder

Open Innovation Platform with Enterprises, Research Institute and Academia

Japan Science and Technology Agency

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3