Evaluation of Steel Slag Optimal Replacement in Asphalt Mixture under Microwave Heating Based on 3D Polyhedral Aggregate Electromagnetic-Thermal Meso-Model

Author:

Huang Siyang12,Ye Yong12,Liu Yuhong12,Zheng Baojing12,Luo Wei12

Affiliation:

1. Hubei Key Laboratory of Hydropower Engineering Construction and Management, China Three Gorges University, Yichang 443002, China

2. College of Hydraulic & Environmental Engineering, China Three Gorges University, Yichang 443002, China

Abstract

Replacing conventional aggregate with steel slag waste can boost the microwave absorption properties of asphalt mixtures and reduce pollution to protect the environment. In order to achieve the best healing in steel slag asphalt mixture, the optimum particle size and content of steel slag are essential. For this purpose, a high-efficiency algorithm for the random growth and placement of convex polyhedron aggregate is proposed in this paper. The limestone aggregate is replaced with an equal volume of steel slag, and a three-dimensional mesoscale random model of steel slag asphalt mixture is developed. The process of microwave heating is simulated by FEM. The numerical simulations are compared with the reported experimental data, which proves that the model is reliable (R2 = 99.40%). Both the volume average temperature and the uniformity of temperature distribution indicate that the steel slag replacement rate of 60% at 4.75–9.5 mm and 60% at 9.5–13.2 mm is optimal, among which the heat transfer of 4.75–9.5 mm steel slag is more uniform, and the temperature gradient is lower. Steel slag can dramatically increase the heating rate of an asphalt mixture, and the peak of the temperature gradient is around the boundary of steel slag. The reflection properties of steel slag may be related to the dielectric constant, permeability, and particle size. Excess steel slag will cause overheating in most zones of the specimen and will also depress the absorption efficiency of microwaves. The coefficient of variance for spherical (0.36) and polyhedral (0.32) aggregate specimen temperatures indicates that the aggregate’s shape has a negligible effect on the heat transfer of asphalt mixtures.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3