Correlation between Microstructure and Tribological Properties of Laser Surface Heat-Treated Stellite Coatings

Author:

Park Chang-Kyoo,Lee Jung-Hoon,Kang Nam-HyunORCID,Chun Eun-JoonORCID

Abstract

To manufacture superior-performance continuous casting mold components, high-velocity oxygen fuel spraying of a Stellite-1 coating was followed by its laser heat treatment at 1373–1473 K using a diode laser. The effects of the laser irradiation conditions on the macro- and microstructural variations along with the hardness and wear resistance within the Stellite-1 coating were evaluated. After the heat treatment, micro-voids within the sprayed coating decreased in number slightly with an increase in the heat treatment temperature. The hardness of the sprayed Stellite-1 coating increased from that of the as-sprayed coating (680 HV) after the laser heat treatment, with a hardness of 860 HV obtained at 1473 K. The cause of the increase in hardness could be the formation of nano-sized W- and Cr-based carbides such as WC, M7C3, and M23C6, as suggested by transmission electron microscopy analysis. The tribological properties of as-sprayed and laser heat-treated samples were investigated by a pin-on-disk tribometer. The laser heat treatment of Stellite-1 coating enhanced wear resistance. This resulted in a lower coefficient of friction and wear rate for the laser heat-treated sample than those for the as-sprayed sample.

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3