Abstract
Hydrogels, and not only natural polysaccharide hydrogels, are substances capable of absorbing large amounts of water and physiological fluids. In this study, we set out to optimize the process for preparing polyvinyl alcohol (PVA) hydrogels. Subsequently, we doped PVA foils with cellulose powder, with poly(ethylene glycol) (PEG) or with gold nanoparticles in PEG colloid solutions (Au). The foils were then modified in a plasma discharge to improve their biocompatibility. The properties of PVA foils were studied by various analytical methods. The use of a suitable dopant can significantly affect the surface wettability, the roughness, the morphology and the mechanical properties of the material. Plasma treatment of PVA leads to ultraviolet light-induced crosslinking and decreasing water absorption. At the same time, this treatment significantly improves the cytocompatibility of the polymer, which is manifested by enhanced growth of human adipose-derived stem cells. This positive effect on the cell behavior was most pronounced on PVA foils doped with PEG or with Au. This modification of PVA therefore seems to be most suitable for the use of this polymer as a cell carrier for tissue engineering, wound healing and other regenerative applications.
Subject
Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献