The Influence of Neodymium Element on the Crater Structure Formed on Al-17.5Si Alloy Surface Processed by High-Current Pulsed Electron Beam

Author:

Li Kui,Gao BoORCID,Xu Ning,Sun Yue,Denisov Vladimir Viktorovich,Hu Liang

Abstract

The effect of neodymium element on the elimination of crater structures on the surface of Al-17.5Si metallic materials processed by high-current pulsed electron beam was investigated in this study. Field emission scanning electron microscopy analysis indicated that the grain sizes of Al-17.5Si metallic materials were reduced and craters were removed from surfaces of the processed Al-17.5Si metallic material after addition of Nd. This can be attributed to the efficient transfer of heat accumulated in rich-silicon (primary silicon) areas without the eruption of a primary silicon phase if the size of primary silicon grains are small. The X-ray diffraction analysis indicates that all diffraction peaks are broadened because of the presence of structural defects, grain refinement and stress state. Electron probe micro-analyzer analysis demonstrated that Al and Nd were evenly distributed on the surface of the treated alloy, which could be attributed to the diffusion of the element. Transmission electron microscopy analysis showed that nano-Al and nano-Si cellular textures were generated during the treated process. The formation of these structures can be attributed to rapid heating and cooling effects by the treatment. Finally, electrochemical tests revealed that the corrosion current density of Al-17.5Si metallic materials (with Nd, 0.3 wt.%.) surface decreased by three orders of magnitude compared with that of the processed Al-17.5Si metallic material surfaces (without Nd). This can be attributed to the elimination of craters and grain refining.

Funder

National Natural Science Foundation of China

the Fundamental Research Funds for the Central University

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3