Numerical Simulation and Experimental Study on Detecting Effective Prestress of 1860-Grade Strands Based on the Drilling Method

Author:

Wu Wenxiang1,Chen Shunchao1,Dong Chunyan23,Peng Wenbai23,Yun Jianzhou1,Nie Liangpeng4

Affiliation:

1. School of Civil Engineering, Southwest Forestry University, Kunming 650224, China

2. Yunnan Provincial Key Laboratory of Building Structures and New Materials Enterprise, Kunming 650223, China

3. Yunnan Academy of Building Research, Kunming 650223, China

4. Yunnan Tongqu Engineering Inspection Company Limited, Kunming 650224, China

Abstract

In this paper, we study the magnitude of the effective prestressing force of steel strands in prestressed reinforced concrete structures. Through the theory of micro-hole release, the functional relationship equation between tensile stress and strain-containing coefficients A and B is established. Then, Midas FEA NX 2022 (v1.1) finite element software is used to establish the stress-release model of strand drilling holes and analyze the influence of parameters such as drilling depth, drilling diameter, hole–edge distance, and tension stress on the amount of stress release. Finally, through a homemade tensioning platform, we verify the reasonableness of the finite element simulation calculation law and determine coefficients A and B. The results of the study show that based on Kirsch’s analytical formula and the theory of microvia release, the axial tension force and axial strain are linearly correlated; the Midas FEA NX finite element software can effectively simulate the force state of strand cross-section; and through the strand-drilled hole model simulation and analysis, it is found that the tension stress value and the stress-release amount are related to the tensile stress value and the tensile stress value. We found that the value of tensile stress and the amount of stress released are positively correlated; with the increase in the hole margin, the amount of stress released gradually decreases; with the increase in the diameter of the hole, the amount of strain released gradually increases; and the greater the depth of the hole, the greater the amount of strain release. Moreover, the use of a hole margin of 3–6 mm, a hole diameter of 1.5 mm and 1.8 mm, and a hole depth of 2.5 mm is more reasonable in the test conditions, as follows. Through the drilling test conditions of 1.5 mm drilling diameter, 2.5 mm drilling depth, and 4 mm hole side distance, we verified the measured strain value of the steel wire and the tensile force value of the linear correlation between the functional relationship and the use of this functional relationship to determine the theoretical derivation of the coefficient to be determined: A is 1.12 and B is 57.84.

Funder

Science and Technology Innovation and Demonstration Project of Yunnan Provincial Department of Transportation, China

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3