A Parametric Three-Dimensional Phase-Field Study of the Physical Vapor Deposition Process of Metal Thin Films Aiming at Quantitative Simulations

Author:

Yang ShenglanORCID,Zhong Jing,Chen Miao,Zhang LijunORCID

Abstract

In this paper, a parametric three-dimensional (3D) phase-field study of the physical vapor deposition process of metal thin films was performed aiming at quantitative simulations. The effect of deposition rate and model parameters on the microstructure of deposited thin films was investigated based on more than 200 sets of 3D phase-field simulations, and a quantitative relationship between the deposition rate and model parameters was established. After that, the heat maps corresponding to the experimental atomic force microscopy images were plotted for characterization of the surface roughness. Different roughness parameters including the arithmetic average roughness (Ra), root mean square roughness (Rq), skewness (Rsk), and kurtosis (Rku), as well as the ratio of Rq to Ra were calculated and carefully analyzed. A quantitative relationship between the surface roughness and the deposition rate and model parameters was obtained. Moreover, the calculated Rq to Ra ratios for the thin films at the deposition rates of 0.22 and 1.0 nm s−1 agreed very well with the experimental data of the deposited Mo and Ti thin films. Finally, further discussion about the correlative behaviors between the surface roughness and the density was proposed for reasoning the shadowing effect as well as the formation of voids during the thin film production.

Funder

The National MCF Energy R&D Program of China

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3