Vapor-Phase Fabrication of a Maleimide-Functionalized Poly-p-xylylene with a Three-Dimensional Structure

Author:

Hu Shu-Man,Lee Chin-YunORCID,Chang Yu-Ming,Xiao Jia-Qi,Kusanagi Tatsuya,Wu Ting-Ying,Chang Nai-Yun,Christy Jane,Chiu Ya-Ru,Huang Chao-Wei,Yang Yen-Ching,Chiang Yu-Chih,Chen Hsien-YehORCID

Abstract

A vapor-phase process, involving the sublimation of an ice substrate/template and the vapor deposition of a maleimide-functionalized poly-p-xylylene, has been reported to synthesize an advanced porous material, with readily clickable chemical interface properties, to perform a Michael-type addition of a maleimide functionality for conjugation with a thiol group. In contrast to the conventional chemical vapor deposition of poly-p-xylylenes on a solid surface that forms thin film coatings, the process reported herein additionally results in deposition on a dynamic and sublimating ice surface (template), rendering the construction of a three-dimensional, porous, maleimide-functionalized poly-p-xylylene. The process seamlessly exploits the refined chemical vapor deposition polymerization from maleimide-substituted [2,2]paracyclophane and ensures the preservation and transformation of the maleimide functionality to the final porous poly-p-xylylene products. The functionalization and production of a porous maleimide-functionalized poly-p-xylylene were completed in a single step, thus avoiding complicated steps or post-functionalization procedures that are commonly seen in conventional approaches to produce functional materials. More importantly, the equipped maleimide functionality provides a rapid and efficient route for click conjugation toward thiol-terminated molecules, and the reaction can be performed under mild conditions at room temperature in a water solution without the need for a catalyst, an initiator, or other energy sources. The introduced vapor-based process enables a straightforward synthesis approach to produce not only a pore-forming structure of a three-dimensional material, but also an in situ-derived maleimide functional group, to conduct a covalent click reaction with thiol-terminal molecules, which are abundant in biological environments. These advanced materials are expected to have a wide variety of new applications.

Funder

Ministry of Science and Technology, Taiwan

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3