Can a-C:H-Sputtered Coatings Be Extended to Orthodontics?

Author:

Fróis AntónioORCID,Aleixo Ana Sofia,Evaristo Manuel,Santos Ana Cristina,Louro Cristina SantosORCID

Abstract

Hydrogenated amorphous carbon (a-C:H) coatings are attractive materials for protecting metallic surfaces in extreme biological environments like the human oral cavity, due to the unusual combination of mechanical properties, superior bioinertness, and relative easier and cheaper production. In this work, two a-C:H coatings were deposited on AISI 316L substrates by reactive magnetron sputtering with two CH4 flows to assess if this outstanding system could extend its application range to orthodontics. A 30-day immersion test in Fusayama-Meyer artificial saliva was conducted to mimic an extreme acidic intraoral pH. Extracts were quantified and used to perform in vitro assays with mono- and co-cultures of macrophages and fibroblast to assess cell viability, while mechanical and structural behaviors were studied by nanoindentation and visible Raman. The empirically estimated H contents of ~28 and 40 at.% matched the hard and soft a-C:H coating regimes of 18 and 7 GPa, respectively. After immersion, no important structural/mechanical modifications occurred, regardless of the H content, without corrosion signs, delamination, or coating detachment. However, the adhesion-promoting Cr-based interlayer seems to reduce corrosion resistance via galvanic coupling. The highest biocompatibility was found for a-C:H coatings with the lowest H content. This study indicates that sputtered a-C:H are promising surface materials in orthodontics.

Funder

Fundação para a Ciência e a Tecnologia

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

Reference81 articles.

1. Contemporary orthodontic appliances;Proffit,2012

2. Biomaterials used in orthodontics: Brackets, archwires, and clear aligners;Abdallah,2019

3. The Role of Oral Cavity Biofilm on Metallic Biomaterial Surface Destruction–Corrosion and Friction Aspects

4. Food-saliva interactions: Mechanisms and implications

5. Changes in the oral environment after tooth brushing and oral gargling;Kwak;Biomed. Res.,2017

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3