Utilizing Metal Oxide Thin Films for Device Engineering of Solution-Processed Organic Multi-Junction Solar Cells

Author:

Hadipour Afshin1

Affiliation:

1. Condensed Matter Physics Group, Department of Physics, Kuwait University, P.O. Box 5969, Safat 13060, Kuwait

Abstract

Electron and hole transporting layers play a major role in high-performance and stable organic-based optoelectronic devices. This paper demonstrates detailed device engineering of multi-junction organic photovoltaics built on two different metal oxide-based electron and hole transport (buffer) layers prepared by thermal or solution-processed methods. The main focus is on the device processing parameters as well as practical details of preparation of buffer layers to give the research community a clear, step-by-step recipe to successfully replicate and build series and parallel connected multi-junction solution-based organic solar cells for their needs. Here, the recipes and deposition conditions of two metal oxide buffer layers are presented in detail, based on basic commercially available materials and tools, to achieve well-engineered tandem (multi-junction) solution-processed organic solar cells. The buffer layers have appropriate energy levels for electrical selectivity of anode and cathode electrodes, and they are highly stable and chemically compatible with processing of solution-based polymer solar cells. To demonstrate the engineering steps of multi-junction devices, the PCE10:PC70BM blend is used as the active layer for all subcells. Then, to improve the power conversion efficiency of the single-junction photovoltaic device, PCE10:PC70BM blend is used in combination with DPPx:PC70BM with different absorption spectra for bottom and top subcell active layers. An optimized series tandem device with 10.6% power conversion efficiency is demonstrated. Generally, the device structures reported here can also be used for other types of optoelectronic devices, such as light emitting diodes and photodetectors.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3