Influence of Scanning Strategy and Post-Treatment on Cracks and Mechanical Properties of Selective-Laser-Melted K438 Superalloy

Author:

Zhang Bin1,Yan Hua1ORCID,Xia Zhisheng1,Zhang Peilei1,Shi Haichuan1,Lu Qinghua1

Affiliation:

1. School of Materials Science and Engineering, Shanghai University of Engineering Science, Shanghai 201620, China

Abstract

The feasibility of manufacturing high-performance components with complex structures is limited due to cracks in some superalloys fabricated by selective laser melting (SLM). By controlling the main process parameters such as scanning strategy, the adverse effects of cracks can be effectively reduced. In this paper, the effects of two different SLM scanning strategies with island and ‘back-and-forth’ and post-heat treatment on the cracks and mechanical properties of selective-laser-melted (SLMed) K438 alloy were investigated. The results show that the SLM method of the ‘back-and-forth’ scanning strategy had better lap and interlayer rotation angles and a more uniform distribution of laser energy compared with the island scanning strategy. The residual stress accumulation was reduced and crack formation was inhibited under this scanning strategy owing to the cooling and shrinkage process. In addition, the dislocation motion was hindered by the formation of uniformly dispersed MC carbides and γ’ phases during the SLM K438 alloy process, which resulted in the density of the as-built SLMed K438 alloy being up to 99.34%, the hardness up to 9.6 Gpa, and the tensile strength up to 1309 MPa. After post-heat treatment, the fine secondary γ’ phases were precipitated and dispersed uniformly in the Ni matrix, which effectively improved the Young’s modulus and tensile strength of the alloy by dispersing the stress-concentrated area.

Funder

China Postdoctoral Science Foundation

Class III Peak Discipline of Shanghai—Materials Science and Engineering

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3