Stable N-Type Single-Walled Carbon Nanotube/Mesh Sheets by Cationic Surfactant Doping and Fluoropolymer Coating for Flexible Thermoelectric Generators

Author:

Amezawa Takuya1,Takashiri Masayuki1

Affiliation:

1. Department of Materials Science, Tokai University, 4-1-1 Kitakaname, Hiratsuka 259-1292, Kanagawa, Japan

Abstract

Single-walled carbon nanotubes (SWCNTs) offer promise as materials for thermoelectric generators (TEGs) due to their flexibility, durability, and non-toxic nature. However, a key barrier to their application lies in their high thermal conductivity, which hampers the generation of temperature differences in TEGs. To address this challenge, we explored a method of enhancing the heat dissipation of SWCNT-based TEGs by coating SWCNT layers onto polymer mesh sheets. During TEG fabrication, achieving stable n-type SWCNT/mesh sheets proved considerably more challenging than their p-type counterparts. This difficulty stemmed from the inferior dispersibility of the n-type SWCNT ink compared to the p-type SWCNT ink. To produce n-type SWCNT/mesh sheets, we initially prepared p-type SWCNT/mesh sheets using p-type SWCNT ink, subsequently doping them with a cationic surfactant solution to induce n-type characteristics. To stabilize the n-type thermoelectric properties in SWCNT/mesh sheets, we applied a fluoropolymer coating to the SWCNT surfaces, mitigating the adsorption of oxygen molecules. This approach yielded n-type SWCNT/mesh sheets capable of long-term maintenance. Furthermore, flexible TEGs fabricated using both p- and n-type SWCNT/mesh sheets demonstrated an output voltage of 15 mV, which can operate IoT sensors using the latest booster circuits, and a maximum power of 100 nW at a temperature difference of 71 K.

Funder

Soken Project at Tokai University

Hiratsuka City-Industry (Kanto Yakin Kogyo Co., Ltd. Hiratsuka, Japan) Academia Joint Research Commercialization Support Grant

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3