Flame-Retardant and Fire-Sensing Packaging Papers Enabled by Diffusion-Driven Self-Assembly of Graphene Oxide and Branched Polyethyleneimine Coatings

Author:

Wen Piao1,Ren Jing1,Zhang Qiang2ORCID,Ling Shengjie13ORCID

Affiliation:

1. School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China

2. School of Textile Science and Engineering, Wuhan Textile University, Wuhan 430200, China

3. Shanghai Clinical Research and Trial Center, Shanghai 201210, China

Abstract

Paper has gained popularity as a packaging material due to its reduced environmental impact compared with non-degradable alternatives. However, its flammability poses safety risks, prompting research on enhancing its flame retardancy. This work introduces a diffusion-driven self-assembly strategy (DDSAS) to create a functional graphene oxide (GO) coating on various packaging papers. DDSAS involves infiltrating the paper’s cellulose microfiber network with branched polyethyleneimine (b-PEI), which binds firmly to cellulose microfibers. Electrostatic interactions between GO and b-PEI then drive GO assembly into a densely stacked, layered structure on the paper surface. This GO structure provides a physical barrier against flames and generates incombustible gases (CO2, H2O, NO2, and NO) when heated, diluting the surrounding oxygen concentration and acting as a heat insulation layer. These factors increase the flame retardancy of treated papers ten-fold. Additionally, the gradual reduction of GO upon heating forms reduced graphene oxide (rGO) on the paper, significantly increasing its electrical conductivity. As a result, the flame-retardant papers not only prevent the fire from spreading but can also act as fire sensors by triggering an alarm signal at the early stages of contact with fire. In summary, this work offers a rational strategy for designing and manufacturing flame-retardant paper packaging materials.

Funder

National Natural Science Foundation of China

ShanghaiTech University and the Double First-class Initiative Fund of ShanghaiTech University

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3