Abstract
In spite of technological progress, most of the current techniques for 2,4,6-trinitrotoluene (TNT) detection are time consuming due to laborious sensor preparation. Thereby, the aim of this work was to enlarge the knowledge for preparing sensitive elements for TNT with the aid of molecular imprinting; a known technique used to deliver biomimetic materials. The study first depicts the auto-assembly mechanism of (TNT) with functional diamino-silanes (i.e., N-(2-aminoethyl)-3-aminopropyl methyl dimethoxysilane), via “double” Meisenheimer complexes. This mechanism is being described herein for the first time and applied further to obtain molecularly imprinted polymer (MIP) films for TNT recognition. For testing the potential application of films as chemical sensor elements, typical rebinding assays of TNT in a liquid state and the rebinding of TNT in a vapor state, using multilayered sensor chips composed of quartz-chromium (Cr)-gold (Au)-titanium oxide (TiO2), were employed. Batch rebinding experiments have shown that thinner films were more efficient on retaining TNT molecules in the first five min, with a specificity of about 1.90. The quartz-Cr-Au-TiO2-MIP capacitive sensors, tested in vapor state, registered short response times (less than 25 s), low sensitivity to humidity and high specificity for TNT.
Funder
Unitatea Executiva pentru Finantarea Invatamantului Superior, a Cercetarii, Dezvoltarii si Inovarii
Subject
Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献