Wearable LIG Flexible Stress Sensor Based on Spider Web Bionic Structure

Author:

Zheng Hehui,Wang HanORCID,Yi Kunran,Lin Jian,Chen An,Chen Lingming,Zou Zebiao,Liu Maolin,Ji Yuchen,Dong Lingzhi,Lin Zhenpei

Abstract

Bionic structures are widely used in scientific research. Through the observation and study of natural biological structure, it is found that spider web structure is composed of many radial silk lines protruding from the center and spiral silk lines surrounding the center. It has high stability and high sensitivity, and is especially suitable for the production of sensors. In this study, a flexible graphene sensor based on a spider web bionic structure is reported. Graphene, with its excellent mechanical properties and high electrical conductivity, is an ideal material for making sensors. In this paper, laser-induced graphene (LIG) is used as a sensing material to make a spider web structure, which is encapsulated onto a polydimethylsiloxane (PDMS) substrate to make a spider web structured graphene flexible strain sensor. The study found that the stress generated by the sensor of the spider web structure in the process of stretching and torsion can be evenly distributed in the spider web structure, which has excellent resonance ability, and the overall structure shows good structural robustness. In the experimental test, it is shown that the flexible stress sensor with spider web structure achieves high sensitivity (GF is 36.8), wide working range (0–35%), low hysteresis (260 ms), high repeatability and stability, and has long-term durability. In addition, the manufacturing process of the whole sensor is simple and convenient, and the manufactured sensor is economical and durable. It shows excellent stability in finger flexion and extension, fist clenching, and arm flexion and extension applications. This shows that the sensor can be widely used in wearable sensing devices and the detection of human biological signals. Finally, it has certain development potential in the practical application of medical health, motion detection, human-computer interaction and other fields.

Funder

the Guangdong Jihua Laboratory Foundation Project

Guangdong Natural Science Foundation

the National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3