Expanded Illite Filler in UV-Curable Polymer Electrolytes for All-Solid-State Li-Ion Batteries

Author:

Bae Minseong1,Ahn Seongki2ORCID,You Sunkyung1,Kim Jae-kwang1ORCID,Kim Daewon3,Kim Hanjoo3,Kim Hong-Il1,Park Jinjoo1

Affiliation:

1. Department of Energy Convergence Engineering, Cheongju University, Cheongju 28503, Republic of Korea

2. School of Food Biotechnology and Chemical Engineering, Research Center of Chemical Technology, Hankyong National University, Anseong 17579, Republic of Korea

3. Pureechem, Namseok-ro, Nami-myeon, Seowon-gu 151-35, Cheongju 28182, Republic of Korea

Abstract

In this study, we explored the potential of illite sourced from Yeongdong-eup, South Korea, as a filler in polymer electrolytes for all-solid-state Li-ion batteries. The illite was expanded (EI) by acid treatment and UV curing was employed to synthesize the polymer electrolytes. The Li+ ionic conductivity of the polymer electrolytes was measured at various EI contents, revealing the highest conductivity of 1.08 × 10−2 S cm−1 at 4 wt% of the EI. The electrochemical performance of NMC cells assembled with the EI-incorporated polymer electrolyte showed a good discharge capacity of over 158.6 mAh g−1 with a coulombic efficiency of 99%. These findings demonstrate the significant potential of EI as a sustainable and efficient filler material for enhancing the performance of polymer-based all-solid-state Li batteries. This study highlighted the applicability of illite sourced from South Korea and its potential contribution to the development of polymer-based all-solid-state batteries.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3