Temperature Dependent Anti-Icing Performance of the Microstructure Surface: Wettability Change and Ice Nucleation

Author:

Lu Yi1

Affiliation:

1. Institute of Thermal Engineering, School of Mechanical, Electronic and Control Engineering, Beijing Jiaotong University, Beijing 100044, China

Abstract

Icing has caused much inconvenience to daily production and life. A microstructure surface possessing a hydrophobic property is an effective countermeasure to impede or delay ice formation for anti-icing purposes. However, surface wettability is sensitive to environmental conditions such as temperature and humidity. In the worst-case scenario, a Wenzel state drop forms and causes degradation of surface anti-icing performance. In this study, a copper alloy was used as the testing sample, and the surface was fabricated using mechanical polishing, micro-milling machining and ultrafast laser etching to form the desired topology and microstructures. The hydrophobicity and icephobicity of four types of surfaces including smooth flat, rough flat, rough microstructure and smooth microstructure were tested by depositing droplets from room temperature to an ultralow subzero temperature condition (below −30 °C). At −10 °C, the icephobicity of the surface was consistent with the surface wettability at room temperature. However, the hydrophobicity of the surface slightly decreased, and a Wenzel state drop formed on the microstructure surface. At −30 °C, the apparent contact angle and the ice–substrate contact area were mainly affected by ice nucleation rather than surface wettability. The bottom layer of the droplet froze after immediate contact with the substrate due to a higher degree of supercooling. The formation of a Cassie state drop reduced the ice–substrate contact area and created more air cushions, which facilitated the extension of the icing process of the drop. The enhancement in the anti-icing performance of the microstructure surface was analyzed from a theoretical basis.

Funder

Fundamental Research Funds for the Central Universities

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3