Solid Particle Erosion Behavior of La2Ce2O7/YSZ Double-Ceramic-Layer and Traditional YSZ Thermal Barrier Coatings at High Temperature

Author:

Zhao Xianli,Liu Wei,Li CongORCID,Yan Gang,Wang Qianwen,Yang Li,Zhou Yichun

Abstract

Thermal barrier coatings (TBC) used for turbine blades are indispensable for the most advanced aero-engines due to their excellent thermal insulation performance. Solid particle erosion (SPE) at high temperatures is one of the most critical factors in TBC failure. The high-temperature SPE failure behavior of TBC on circular sheets and turbine blades was investigated in this paper at erosion angles 60° and 90°. The high-temperature thermal shock behavior of TBC was also studied as the control group. The SPE failure mechanism of TBC is attributed to the spallation and thickness decrease of TBC. The formation of thermally grown oxide is the main reason for the TBC spallation, while the thickness decrease of TBC is due to the impaction of solid particles by near-surface cracking. The erosion angle is critical to the failure behavior of TBC, and TBC is more susceptible to SPE at an erosion angle of 60° than that at 90° because of the additional shear stress. Furthermore, a La2Ce2O7/YSZ double-ceramic-layer TBC was designed and deposited on turbine blades. The experimental results indicate that this type of double-layer TBC has more excellent performance under SPE than traditional YSZ TBC.

Funder

the National Natural Science Foundation of China

the Foundation for Innovative Research Groups of Hunan Province

the Innovation Capability Support Program of Shaanxi

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3