Ultra-Fast Growth of ZnO Nanorods on Cotton Fabrics and Their Self-Cleaning and Physiological Comfort Properties

Author:

Khan Muhammad Zaman,Militky JiriORCID,Petru MichalORCID,Tomková Blanka,Ali Azam,Javed Asif,Azeem Musaddaq,Křemenáková Dana

Abstract

The main aim of the present study was to investigate the effect of microwave irradiation time on the photocatalytic and physiological comfort characteristics of zinc-oxide-nanorod-coated cotton fabrics. An ultra-fast technique was employed to grow the zinc oxide nanorods on cotton fabrics using a microwave-assisted hydrothermal method. The axial (length) and lateral (diameter) growth of the zinc oxide nanorods was observed to increase with microwave irradiation time. The ZnO nanorods uniformly and entirely covered the cotton fibers. The surface morphology, topography and chemical characteristics of the ZnO nanorods were investigated by scanning electron microscopy (SEM), EDS analysis, X-ray diffraction (XRD), atomic force microscopy (AFM) and inductively coupled plasma-optical emission spectrometry (ICP-OES). The degradation of orange II dye under UV light irradiation was observed to assess photocatalytic self-cleaning and solution discoloration ability. The ZnO-nanorod-coated cotton fabrics exhibited excellent photocatalytic activity, as the stains of orange II dye disappeared predominantly within 4 h and the coated fabrics became almost white after 6 h. Analyses of thermal properties, water vapor permeability (WVP), air permeability and stiffness were also performed to investigate the physiological comfort of the ZnO-nanorod-coated fabrics. The thermal conductivity and thermal absorptivity were observed to increase with an increase in the size and density of the ZnO nanorods. Moreover, non-significant reductions in water vapor permeability and air permeability were observed with application of the ZnO nanorods. The stiffness of the ZnO-nanorod-coated cotton fabric increased due to the complete coverage of fibers by the uniform growth of the ZnO nanorods. The ZnO-nanorod-coated cotton fabrics also showed good washing durability and reusability.

Funder

Ministerstvo Školství, Mládeže a Tělovýchovy

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3