Research on Coarse-Grained Discrete Element Model and Optimization for Fine Particles

Author:

Jiang Xin

Abstract

Optimization is important for the performance improvement of mechanical equipment. To advance this approach, a coarse-grained model for the discrete element method (DEM) is proposed with consideration of mechanical structure. This study identified a coarse-grained model that can be used in particle simulation, and designed a mixing equipment model, which was further optimized through combination with the coarse-grained model. The optimization and characteristics of a stirred mill were investigated. The novelty of this study is that the coarse-grained model was used for equipment optimization. Different results were obtained for different model structures. Concentration is related to the model. The average collision energy was obtained from media-to-wall or particle-to-wall collisions. The largest number of collisions that cause different string performance in different models was obtained. The optimized model had the largest average collision energy. The characteristics of different models combined with the coarse-grained model were determined, and useful results regarding the collision energy were obtained for future performance considerations. In summary, a suitable model was established and combined with an appropriate coarse-grained model to achieve performance improvement.

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3