Silver-Containing Thin Films on Transparent Polymer Foils for Antimicrobial Applications

Author:

Vitelaru CatalinORCID,Parau Anca C.,Kiss Adrian E.ORCID,Pana IulianORCID,Dinu MihaelaORCID,Constantin Lidia R.,Vladescu AlinaORCID,Tonofrei Lavinia E.,Adochite Cristina S.ORCID,Costinas Sarah,Rogozea LilianaORCID,Badea MihaelaORCID,Idomir Mihaela E.

Abstract

The increasing occurrence of infections caused by pathogens found on objects of everyday use requires a variety of solutions for active disinfection. Using active materials that do not require daily maintenance has a potential advantage for their acceptance. In this contribution, transparent films, with silver as the main antimicrobial agent and a total thickness of a few tens of nm, were deposited on flexible self-adhesive polymer foils used as screen protectors. TiO2 and SiO2 were used as transparent matrix to embed the Ag nanoparticles, ensuring also their mechanical protection and controlled growth. HiPIMS (High-Power Impulse Magnetron Sputtering) was used for the sputtering of the Ag target and fine control of the Ag amount in the layer, whereas TiO2 and SiO2 were sputtered in RF (Radio Frequency) mode. The thin film surface was investigated by AFM (Atomic Force Microscopy), providing information on the topography of the coatings and their preferential growth on the textured polymer foil. XRD (X-Ray Diffraction) revealed the presence of specific Ag peaks in an amorphous oxide matrix. UV-Vis-NIR (Ultraviolet-Visible-Near Infrared) spectroscopy revealed the presence of nanostructured Ag, characterized by preferential absorption in the 400 to 500 nm spectral range. The antimicrobial properties were assessed using an antimicrobial test with the Escherichia coli strain. The highest efficiency was observed for the Ag/SiO2 combination, in the concentration range of 104–105 CFU/mL.

Funder

Unitatea Executiva Pentru Finantarea Invatamantului Superior a Cercetarii Dezvoltarii si Inovarii

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3