Preparation and Characterization of Low Infrared Emissive Aluminum/Waterborne Acrylic Coatings

Author:

Yan Xiaoxing,Wang Lin,Qian Xingyu

Abstract

An aluminum/waterborne acrylic coating was developed by orthogonal experiments, and the gloss, emissivity, chromatic distortion, hardness, adhesion, impact resistance, and corrosion resistance of the coatings were examined. The results showed that the effect of drying time on the infrared emissivity of coatings was more significant than that of the Al powder concentration and nano-silica slurry. When the drying time was prolonged from 0.5 to 6.0 min, the gloss of the coating decreased slowly and the gloss remained low. The infrared emissivity first decreased and then increased. The infrared emissivity of coatings dried for 2.0 min was better. The L’ value gradually decreased and showed a small change of range. With the increasing of the drying time, the hardness of the coating gradually decreased and was the highest at 0.5–2.0 min. The drying time had no effect on the adhesion level. The impact resistance of the coating was better during the drying period of 1.0–3.0 min. The corrosion resistance of the coating was better at 2.0 min. When the drying time was 2.0 min, the waterborne coating showed the better comprehensive performance. This study provides new prospects in using low infrared emissive coatings for infrared stealth and compatibility with visible light.

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3