Structural Properties and Oxidation Resistance of ZrN/SiNx, CrN/SiNx and AlN/SiNx Multilayered Films Deposited by Magnetron Sputtering Technique

Author:

Saladukhin Ihar,Abadias Gregory,Uglov Vladimir,Zlotski Sergey,Janse van Vuuren ArnoORCID,Herman O’Connell JacquesORCID

Abstract

In the present work, the structure, stress state and phase composition of MeN/SiNx (Me = Zr, Cr, Al) multilayered films with the thickness of elementary layers in nanoscale range, as well as their stability to high temperature oxidation, were studied. Monolithic (reference) and multilayered films were deposited on Si substrates at the temperatures of 300 °C (ZrN/SiNx and AlN/SiNx systems) or 450 °C (CrN/SiNx) by reactive magnetron sputtering. The thickness ratios of MeN to SiNx were 5 nm/2 nm, 5 nm/5 nm, 5 nm/10 nm and 2 nm/5 nm. Transmission electron microscopy (TEM), X-ray Reflectivity (XRR) and X-ray Diffraction (XRD) testified to the uniform alternation of MeN and SiNx layers with sharp interlayer boundaries. It was observed that MeN sublayers have a nanocrystalline structure with (001) preferred orientation at 5 nm, but are X-ray amorphous at 2 nm, while SiNx sublayers are always X-ray amorphous. The stability of the coatings to oxidation was investigated by in situ XRD analysis (at the temperature range of 400–950 °C) along with the methods of wavelength-dispersive X-ray spectroscopy (WDS) and scanning electron microscopy (SEM) after air annealing procedure. Reference ZrN and CrN films started to oxidize at the temperatures of 550 and 700 °C, respectively, while the AlN reference film was thermally stable up to 950 °C. Compared to reference monolithic films, MeN/SiNx multilayers have an improved oxidation resistance (onset of oxidation is shifted by more than 200 °C), and the performance is enhanced with increasing fraction of SiNx layer thickness. Overall, CrN/SiNx and AlN/SiNx multilayered films are characterized by noticeably higher resistance to oxidation as compared to ZrN/SiNx multilayers, the best performance being obtained for CrN/SiNx and AlN/SiNx with 5 nm/5 nm and 5 nm/10 nm periods, which remain stable at least up to 950 °C.

Funder

Belarusian Republican Foundation for Fundamental Research

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3