Improving the Processability of a One-Step Hydrophobic Coating for Hot-Dipped Galvanised Steel for Industrial Applications

Author:

Williams Jamie,Griffiths ChristianORCID,Dunlop TomORCID,Jewell EifionORCID

Abstract

Hydrophobicity on steel-based metallic surfaces provides an advantage in limiting corrosion and debris buildup on the surface, thereby, improving the substrate performance. An experimental investigation was conducted on the development of zinc stearate and silicon dioxide coatings on the surface of hot-dipped galvanised zinc-coated steel substrates, which could be used to induce superhydrophobicity. Under optimal formulation and processing conditions, a contact angle of 146° could be produced within a 120-min processing window. This represents a reduction in processing time of 67% over previous literature using similar chemistry. In addition, we proved that costly nano silicon dioxide can be replaced by lower cost micro silicon dioxide without decreasing the performance of the coating contact angle. Under standard accelerated exposure tests, the coating was shown to reduce oxide build up by a factor of 3 compared to uncoated galvanized steel.

Funder

UK Research and Innovation

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3