Reduced Dislocation Density of an InP/GaAs Virtual Substrate Grown by Metalorganic Chemical Vapor Deposition

Author:

Tsai Yu-LiORCID,Wu Chih-Hung

Abstract

Integrating indium phosphide (InP) material on a gallium arsenide (GaAs) substrate to form an InP/GaAs virtual substrate has been an attractive research subject over the past decade. However, the epitaxial growth of InP on GaAs is challenging due to a large mismatch in the lattice constant and thermal expansion coefficient. This paper describes the successful hetero-epitaxy of InP on a GaAs substrate by metalorganic chemical vapor deposition. The hetero-epitaxy in this study utilized a hybrid growth method involving a thin indium gallium arsenide (InGaAs) linearly graded buffer, two-step InP growth, and a post-annealing process. Transmission electron microscopic observations showed that a traditional two-step InP/GaAs virtual substrate was smooth but had a high threading dislocation density (TDD) of 1.5 × 109 cm−2 near the InP surface. The high TDD value can be reduced to 2.3 × 108 cm−2 by growing the two-step InP on a thin InGaAs linearly graded buffer. The TDD of an InP/GaAs virtual substrate can be further improved to the value of 1.5 × 107 cm−2 by removing the low-temperature InP nucleation layer and carrying out a post-annealing process. A possible reason for the improvement in TDD may relate to a dislocation interaction such as the annihilation of mobile threading dislocations. Room-temperature photoluminescence spectra of InP/GaAs virtual substrates with different TDD values were compared in this study. The optical and micro-structural characterization results suggest that the proposed growth method may be feasible for making good-quality and relatively low-cost InP/GaAs virtual substrates for the integration of optoelectronic devices on them.

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3