Influence of Bilayer Thickness on Mechanical and Tribological Properties of (Ti-Al)N/MoN Nanostructured Hard Coatings Deposited by Cathodic Arc Ion Plating

Author:

Yousaf Muhammad I.1,Abudouwufu Tushagu23,Yang Bing4,Tolstoguzov Alexander356ORCID,Fu Dejun237

Affiliation:

1. Department of Applied Sciences, National Textile University, Faisalabad 37610, Pakistan

2. Key Laboratory of Artificial Micro- and Nanomaterials of Ministry of Education and Hubei Nuclear Solid Physics Key Laboratory, School of Physics and Technology, Wuhan University, Wuhan 430072, China

3. Innovation Center of Tsinghua University Research Institute, Zhuhai 519000, China

4. School of Power & Mechanical Engineering, Wuhan University, Wuhan 430072, China

5. Department of Space Technologies, Utkin Ryazan State Radio Engineering University, Gagarin Str. 59/1, 390005 Ryazan, Russia

6. Centre for Physics and Technological Research (CeFITec), Universidade Nova de Lisboa, 2829-516 Caparica, Portugal

7. Wuhan University Shenzhen Research Institute, 6 Yuexin 2nd Rd., Shenzhen 518057, China

Abstract

Deposition of (Ti-Al)N/MoN multilayered coatings was carried out through a cathodic ion-plating system in an argon and then nitrogen atmosphere. Bilayer thickness (Λ) of all the samples were achieved, from 22 to 104 nm, by organizing substrate holder rotational speed (SRS). To obtain the optimum properties of the (Ti-Al)N/MoN coatings, the Ti and Al ratio was maintained at a level of 1:1. X-ray diffraction (XRD), high-resolution transmission electron microscopy (HRTEM), X-ray photoelectron spectroscopy (XPS), and Raman spectroscopy were utilized to analyze the crystal structure and morphology of the coatings. Mechanical and tribological properties were examined by nanohardness and atomic force microscopy (AFM). The preferred orientation of the (Ti-Al)N/MoN nanoscale multilayer films was TiAlN (200) and MoN (200), which had face centered cubic (fcc) and hexagonal structures, respectively. The hardness increased with the decrease in Λ (104 nm to 26 nm), and then it increased. The highest hardness of 37 GPa was revealed at Λ = 26 nm, whereas the least wear rate of 8.09 × 10−7 mm3/N.m was attained at Λ = 22 nm. Wear rate, roughness, and coefficient of friction were decreased with decreasing bilayer period. EDS results showed that Al and Ti contents were almost the same in all samples, as per design of the experiment.

Funder

National Natural Science Foundation of China

Shenzhen Municipal Committee on Science and Technology Innovation

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3