Abstract
There always exists subjective and objective color differences between digital wood grain and real wood grain, making it difficult to replicate the color of natural timber. Therefore, we described a novel method of correcting the chromatic aberration of scanned wood grain to maximally restore the objective color information of the real wood grain. A point-to-point correction model of chromatic aberration between the scanned wood grain and the measured wood grain was established based on Circle 1 by adjusting the three channels (sR, sG, and sB) of the scanned images. A conversion of the color space was conducted using the mutual conversion formulas. The color change of the scanned images before and after the correction was evaluated through the L∗a∗b∗ color-mode-based ΔE∗. and the lαβ color-model-based CIQI (Color Image Quality Index) and CQE (Color Quality Enhancement). The experimental results showed that the chromatic aberration ΔE∗ between the scanned wood grain and the measured wood grain decreased and the colorfulness index CIQI of the scanned wood grain increased for most wood specimens after the correction. The values of ΔE∗ of the twenty kinds of wood specimens decreased by an average of 3.1 in Circle 1 and 2.3 in Circle 2, thus the correction model established based on Circle 1 was effective. The color of the scanned wood grain was more consistent with that of the originals after the correction, which would provide a more accurate color information for the reproductions of wood grain and had an important practical significance.
Funder
National Key R & D Program of China
Natural Science Foundation of Jiangsu Province
Subject
Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献