IP–ZrO2/BC Nanofiltration Membranes: Preparation and Properties

Author:

Weng Rengui,Tian Feng,Huang Xin,Chen Guohong

Abstract

In this study, by adding zirconium anhydride (ZrO2) particles to a solution of N–methylmorphorphine–N–oxide (NMMO) and bamboo cellulose (BC), we used interfacial polymerization (IP) to obtain regenerated cellulose nanofiltration membranes (IP–ZrO2/BC–NFMs) that exhibited high water flow and rejection of salts and dyes. During interfacial polymerization, anhydrous piperazine (PIP) was used as the waterborne monomer, and 1,3,5–trimesoyl chloride (TMC) and n–hexane were used as the organic phase. The procedure was adjusted by analyzing the impacts of the concentrations of the water and organic phase monomers and the reaction duration on the performance of the developed IP–ZrO2/BC–NFMs. The chemical structures and morphologies of the as–obtained IP–ZrO2/BC–NFMs were examined using various characterization techniques. The performance of these membranes for removal of inorganic salts and dyes as well as their water flow were investigated. IP–ZrO2/BC–NFMs obtained at a pressure of 0.5 MPa, PIP concentration of 1.5 wt.%, TMC concentration of 0.15 wt.%, and polymerization period of 2 min displayed the highest water flux (55.12 LMH) and the best desalination effect (NaCl rejection rate = 19.15%). Over 90% of both Methyl Blue (MB) and Congo Red (CR) dyes were intercepted. We demonstrated that the addition of ZrO2 to nanofiltration membranes significantly enhanced the water flow of the IP–ZrO2/BC–NFMs as well as the salt ion rejection rate.

Funder

General Project of Fujian Provincial Natural Science Foundation

National Key Research and Development Program of China in 2019

Initial Scientific Research Foundation of Fujian University of Technology

Research Development Foundation of Fujian University of Technology

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3