Relationship between Osteoblast Proliferation and the Surface Properties of Polymer-like Carbon Films Deposited at Different Ar/CH4 Mixed-Gas Ratios in the Radio-Frequency Plasma CVD Process

Author:

Alanazi Ali1ORCID,Kanasugi Kazuya2,Eguchi Hiroaki2,Manome Yoshinobu23ORCID,Ohgoe Yasuharu4ORCID,Hirakuri Kenji2

Affiliation:

1. Applied Medical Sciences College, King Saud University, Riyadh 11451, Saudi Arabia

2. Department of Electrical and Electronic Engineering, Faculty of Engineering, Tokyo Denki University, 5 Senju Asahi-cho, Adachi-ku, Tokyo 120-8551, Japan

3. Core Research Facilities, Jikei University School of Medicine, 3-25-8, Nishi-shinbashi, Minato-ku, Tokyo 105-8461, Japan

4. Division of Electronic Engineering, Faculty of Science and Engineering, Tokyo Denki University, Ishizaka Hatoyama, Saitama 350-0394, Japan

Abstract

In the deposition of polymer-like carbon (PLC) films on Si substrates via radio-frequency plasma CVD (RF-PCVD), the effect of the Ar/CH4 gas mixture ratio on the bio-interface of the PLC films remains unclear and the effectiveness of introducing Ar gas must be proven. In this study, five types of PLC films are prepared on Si substrates via RF-PCVD with an Ar/CH4 gas mixture. The effects of the Ar/CH4 gas ratio on the structure, surface properties, and osteoblast proliferation of the PLC films are investigated. The PLC film structure is graphitized as the hydrogen content in the PLC film decreases with the increasing Ar gas ratio. Based on in vitro cell culture tests, a PLC film with a higher Ar gas ratio promotes the osteoblast proliferative potential after 72 h compared with a PLC film with a relatively low Ar gas ratio. Moreover, the surface roughness and hydrophilicity of the PLC film increase with the Ar gas ratio. Accordingly, we demonstrate the effectiveness of Ar gas incorporation into the RF-PCVD process to promote the biological responsiveness of PLC films. PLC coatings are expected to be widely applied for surface modification to improve the mechanical characteristics and biological responses of orthopedic implant devices.

Funder

Japan Society for the Promotion of Science, Grant-in-Aid for Scientific Research

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3