Study on Eccentric Uncoupled Blasting Effect of Cutting Seam Pipe

Author:

Wang Wei,Zhang Jiaqi,Liu Ao

Abstract

In order to study the blasting effect and the damage to the rock mass when the cutting seam cartridge is eccentrically and uncoupled. The ANSYS/LS-DYNA® nonlinear dynamic platform was used to simulate the blasting effect of five eccentric uncoupled coefficients on the cutting seam cartridge, and the crack growth process under the condition of complete eccentricity was simulated. By comparing and analyzing the stress of measuring points in the direction of cutting seam, vertical cutting seam direction, and circumferential cutting seam pipe under different working conditions. It is concluded that the effect of detonation products is affected by the wrapping property of the cutting seam pipe and the eccentric uncoupled coefficient. With the increase of the eccentric uncoupled coefficient, the load distribution presents obvious non-uniformity. The pressure on the uncoupled side of the blasthole is smaller than that on the coupled side, and the peak time of the uncoupled side also lags behind that on the coupled side. When the eccentric uncoupled coefficient is 1, the peak pressure on the coupled side is 5.78 times that of the uncoupled side, and the explosive stress field is biased toward the coupled side. The existence of the cutting seam pipe causes stress concentration at the opening, which enhances the guiding effect of the initial crack, and the stress in the non-cutting seam direction is buffered. Therefore, the eccentric arrangement of the cutting seam pipe determines the formation of the initial crack and the subsequent blasting effect. When the cutting seam cartridge is arranged eccentrically and uncoupled, it will cause under-excavation at the connection direction of blasthole, which will cause less disturbance to the rock mass on the uncoupled side. If the retaining side rock mass is on the coupled side in actual blasting, the eccentric uncoupled arrangement will cause greater over-excavation and damage. Therefore, it is necessary to avoid this situation as far as possible and provide better guidance for the actual construction.

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

Reference45 articles.

1. Study on the directional fracture-controlled blasting with slit-charge in rock;Luo;J. Vib. Shock,2006

2. Two-medium decoupling blasting method of charge control;Zhao;J. China Coal Soc.,2009

3. The slit-charge breaking rock mechanism and application;Zhang;Explos. Mater.,2001

4. Energy evolution and stress response during stress wave prorogation in the intercalation;Liu;Rock Soil Mech.,2018

5. Controlled blasting with ligamented charge holders

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Cracking behavior of brittle materials under eccentric decoupled charge blasting;Engineering Failure Analysis;2024-09

2. Fracture characteristics of iron ore under uncoupled blast loading;International Journal of Mining Science and Technology;2022-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3