Numerical Analysis of the Interactions between Plasma Jet and Powder Particles in PS-PVD Conditions

Author:

Zhang Tao,Mariaux GillesORCID,Vardelle Armelle,Li Chang-Jiu

Abstract

Plasma spray-physical vapor deposition (PS-PVD) refers to a very low-pressure (~100 Pa) deposition process in which a powder is injected in a high-enthalpy plasma jet, and mostly vaporized and recondensed onto a substrate to form a coating with a specific microstructure (e.g., columnar). A key issue is the selection of the powder particle size that could be evaporated under specific spray conditions. Powder evaporation takes place, first, in the plasma torch between the injection location and nozzle exit and, then, in the deposition chamber from the nozzle exit to the substrate location. This work aims to calculate the size of the particles that can be evaporated in both stages of the process. It deals with an yttria-stabilized zirconia powder and two commercial plasma torches operated at different arc powers with gas mixtures of argon and helium or argon and hydrogen. First, it used computational fluid dynamics simulations to calculate the velocity and temperature fields of the plasma jets under very low-pressure plasma conditions. Then, it estimated the evaporation of the particles injected in both plasma jets assuming an isothermal evaporation process coupled with momentum and heat transfer plasma-particle models in a rarefied plasma. The calculations showed that, for different powers of the Ar–H2 and the Ar–He operating conditions of this study, the heat flux from the plasma jet to particles inside the torch is much higher than that transferred in the deposition chamber while the specific enthalpy transferred to particles is comparable. The argon-helium mixture is more efficient than the argon-hydrogen mixture to evaporate the particles. Particles less than 2 μm in diameter could be fully evaporated in the Ar–He plasma jet while they should be less than 1 µm in diameter in the Ar–H2 plasma jet.

Funder

National Science and Technology Major Project

National Basic Research Program

joint PhD program of China Scholarship Council

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3