Nanomechanical Behavior, Adhesion and Corrosion Resistance of Hydroxyapatite Coatings for Orthopedic Implant Applications

Author:

Khlifi Kaouther,Dhiflaoui HafedhORCID,Ben Rhouma Amir,Faure JoëlORCID,Benhayoune Hicham,Ben Cheikh Laarbi Ahmed

Abstract

The aim of this work was to investigate the nanomechanical, adhesion and corrosion resistance of hydroxyapatite (HAP) coatings. The electrodeposition process was used to elaborate the HAP coatings on Ti6Al4V alloy. The effect of hydrogen peroxide concentration H2O2 on the electrolyte and the heat treatment was studied. Surface morphology of HAP coatings was assessed, before and after heat treatment, by scanning electron microscopy associated with X-ray microanalysis (SEM-EDXS). Moreover, X-ray diffraction (XRD) was performed to identify the coatings’ phases and composition. Nanoindentation and scratch tests were performed for nanomechanical and adhesion behavior analysis. The corrosion resistance of the uncoated, the as-deposited, and the heat-treated coatings was investigated by electrochemical test. The obtained results revealed that, with 9% of H2O2 and after heat treatment, the HAP film exhibited a compact and homogeneous microstructure. The film also showed a crystal growth: stoichiometric hydroxyapatite (HAP) and β-tricalcium phosphate (β-TCP). After heat treatment, the nanomechanical properties (H, E) were increased from 117 ± 7 MPa and 24 ± 1 GPa to 171 ± 10 MPa and 38 ± 1.5 GPa respectively. Critical loads (LC1, LC2, and LC3) were increased from 0.78 ± 0.04, 1.6 ± 0.01, and 4 ± 0.23 N to 1.45 ± 0.08, 2.46 ± 0.14, and 4.35 ± 0.25 N (respectively). Furthermore, the adhesion strength increased from 8 to 13 MPa after heat treatment. The HAP heat-treated samples showed higher corrosion resistance (Rp = 65.85 kΩ/cm2; Icorr = 0.63 µA/cm2; Ecorr = −167 mV/ECS) compared to as-deposited and uncoated samples.

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3