Research on Simulation of Coating Fusion and Solidification Process in Electro-Spark Deposition

Author:

Liu Yu1ORCID,Su Quanning2,Zhang Shiqi1,Qu Jiawei1,Zhang Shengfang1

Affiliation:

1. School of Mechanical Engineering, Dalian Jiaotong University, Dalian 116028, China

2. Qingdao Metro Operation Co., Ltd., Qingdao 266000, China

Abstract

As a surface-strengthening technology, electro-spark deposition (ESD) is widely used in the strengthening and repair of key components of high-end equipment. In this paper, a fusion and solidification model of ESD coating is established. The method of heat–fluid–solid interaction is adopted to simulate the material’s flow and fusion process in the droplet dropping into the molten pool. The distribution law of the coating-matrix material inside the coating was studied. Through the heat transfer between the molten material and the matrix material, the condensation and solidification process of the coating-matrix material is simulated, the temperature change in the coating area during the solidification process is analyzed, and the solidification law of the molten material is studied. The results show that the deposition time reaches 80 μs, and the content of electrode material at the bottom of the molten pool reaches 4.5%. The content of electrode material in the upper region of the material gushing out of the molten pool is higher than that in the bottom region. The material outside the molten pool solidifies first, and the molten material in the molten pool gradually solidifies from the bottom up; the shape of the solidification interface is similar to the boundary of the molten pool. Through the single-point deposition experiment of electro-spark deposition, the surface morphology of the deposition point was observed. The depth of the concave part of the contour can reach 16 μm. The difference between the two contour curves in the horizontal direction is not much; the error of the diameter is about 4%. The element distribution of the surface and the section of the deposition point are analyzed. The diffusion distance in the depth direction of the coating is about 4μm, and the transverse diffusion distance inside the coating is 364 μm. The error is 7.6% compared with the experimental results. The cross-section structure of the deposition point was observed, and the error between the experimental results and the simulation results in diameter is about 11%. It was found that the material distribution in the sedimentary area is basically consistent with the simulation results, and the simulation results are verified from the side.

Funder

General Program of the Natural Science Foundation of Liaoning Province

Liaoning BaiQianWan Talents Program

Natural Science Basic Research Project of the Education Department of Liaoning Province

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3