Sintering Behavior, Microstructure and Microwave Dielectric Properties of Li2TiO3-Based Solid Solution Ceramics with Lithium Fluoride Addition for Low-Temperature Co-Fired Ceramic Applications

Author:

Guo Yunfeng1,Wang Zexing1,Li Jiamao1ORCID

Affiliation:

1. Advanced Ceramics Research Center, School of Materials Science and Engineering, Anhui University of Technology, Ma’anshan 243032, China

Abstract

Nowadays, low-temperature co-fired ceramic (LTCC) technology has become one of the main forms of manufacturing electronic devices. However, a majority of microwave dielectric ceramics are not suitable as LTCC materials due to their high sintering temperatures. Developing novel LTCC materials with good microwave dielectric properties is extremely urgent. In this paper, an LiF sintering aid was added to Li2Ti0.8(Co1/3Nb2/3)0.2O3 (LTCN) ceramics to explore new LTCC materials. The sintering behavior, microstructure and microwave dielectric properties of LTCN + x wt% LiF ceramics were investigated in detail. The results indicated that the addition of LiF increased the degree of disorder in the LTCN matrix, transforming it from a monoclinic to a cubic crystal system. The ceramics exhibited relatively dense and homogeneous microstructures at the sintering temperature of 950 °C as the LiF doping amount was not less than 2 wt%. By LiF doping, the quality factor (Q × f) value was significantly enhanced due to the improved microstructure. Meanwhile, the temperature coefficient of resonant frequency (τf) of LTCN ceramics was successfully regulated to the near zero value owing to the negative τf characteristic of LiF. Excellent microwave dielectric properties of dielectric constant (εr) = 19.01, Q × f = 144,890 GHz, τf = −1.52 ppm/°C were obtained when the sample doped 3 wt% LiF was sintered at 950 °C for 3 h. Furthermore, the good chemical compatibility of the LTCN-3 wt% LiF ceramic with silver electrodes suggested that the ceramic was a potential material for LTCC applications.

Funder

Natural Science Foundation of Anhui Provincial Education Department

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3