Effects of Bias Voltage and Substrate Temperature on the Mechanical Properties and Oxidation Behavior of CrWSiN Films

Author:

Chang Li-Chun12ORCID,Tzeng Chin-Han3,Ou Tzu-Yu3,Chen Yung-I34ORCID

Affiliation:

1. Department of Materials Engineering, Ming Chi University of Technology, New Taipei 243303, Taiwan

2. Center for Plasma and Thin Film Technologies, Ming Chi University of Technology, New Taipei 243303, Taiwan

3. Department of Optoelectronics and Materials Technology, National Taiwan Ocean University, Keelung 202301, Taiwan

4. Center of Excellence for Ocean Engineering, National Taiwan Ocean University, Keelung 202301, Taiwan

Abstract

CrWSiN films were prepared through the co-sputtering technique, and the process variables were substrate bias voltage and temperature. The mechanical properties of hardness and elastic modulus of the CrWSiN films were dominantly affected by their average crystallite size and by substrate bias voltage and temperature. Moreover, the effect of substrate temperature was more evident than that of substrate bias. The highest hardness and elastic modulus of 42.6 and 459 GPa, respectively, were obtained for the Cr20W28Si9N43 film fabricated at a substrate temperature of 400 °C, which exhibits an evident advantage over the 25.0 and 323 GPa values for the Cr21W28Si9N42 film fabricated at room temperature. In contrast, an increase in negative bias voltage to −100 V on the substrate decreased the mechanical properties compared to one prepared using a similar process without applying the negative bias voltage. The oxidation resistance of the Cr-enriched Cr37W4Si10N49 and Cr37W5Si10N48 films was superior to that of the Cr20W28Si9N43 films with near-equal Cr and W contents annealed at 900 °C in air. The formation of a surficial Cr2O3 layer plays a vital role in restricting subsequent oxidation for CrWSiN films.

Funder

National Science and Technology Council, Taiwan

National Taiwan Ocean University

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3