Double-Encapsulated Microcapsules for the Adsorption to Cotton Fabrics

Author:

Xiao Zuobing,Xu Wenwen,Ma Jiajia,Zhao Yi,Niu Yunwei,Kou Xingran,Ke Qinfei

Abstract

Double-encapsulated microcapsules (DEMs) were prepared and effectively adsorbed onto the cotton fabric surfaces during impregnation without crosslinking agents to obtain functional cotton fabrics. Specifically, Fourier transform infrared spectrometer (FTIR) and confocal laser scanning microscope (CLSM) showed two different molecules (lavender essence and dye indigo) were encapsulated into the microcapsules simultaneously, with loading capacity of 10% and 9.73%, respectively. The spherical shape of DEMs was confirmed by transmission electron microscopy (TEM), confocal laser scanning microscope (CLSM) and average particle sizes were about 617 nm, as measured by dynamic light scattering (DLS). According to the results of IR and X-ray photoelectron spectroscopy (XPS) experiments, DEMs was combined with cotton fabrics by hydrogen bond. The superior thermal stability of microcapsules and functional cotton fabrics was also demonstrated. The adsorption behavior and mechanism of microparticles onto cotton fabrics were further examined by chemical property characterization in combination with adsorption kinetic model. The kinetic adsorption process included three stages: fast adsorption, slow adsorption rate, and adsorption equilibrium. Finally, the good color fastness of the functional cotton fabrics was demonstrated by the tests of rubbing and accelerated laundering. Herein, this study will be beneficial to the development of functional cotton fabrics-based materials.

Funder

Capacity building project of local universities Science and Technology Commission of Shanghai Municipality

National Natural Science Foundation of China

China Postdoctoral Science Foundation

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3