Synergetic Design of Transparent Topcoats on ITO-Coated Plastic Substrate to Boost Surface Erosion Performance

Author:

Zhang Xuan,Chen Yuandong,Zhang Wenqiao,Zhong Yanli,Lei PeiORCID,Hao Changshan,Yan Yue

Abstract

Transparent conductive films (TCFs) have received much research attention in the area of aeronautical canopies. However, bad wear, corrosion resistance and weak erosion performance of TCFs dramatically limit their scalable application in the next-generation aeronautical and optoelectronic devices. To address these drawbacks, three types of optically transparent coatings, including acrylic, silicone and polyurethane (PU) coatings were developed and comparatively investigated ex situ in terms of Taber abrasion, nanoindentation and sand erosion tests to improve the wear-resistance and sand erosion abilities of ITO-coated PMMA substrates. To elucidate the sand erosion failure of the coatings, the nanoindentation technique was employed for quantitative assessment of the shape recovery abilities under probe indentation. Results show that the PU topcoats can greatly enhance the sand erosion properties, which were superior to those of acrylic and silicone topcoats. This result can be attributed to the good toughness and self-healing properties of PU topcoats. Additionally, high hardness and good Taber abrasion properties of the ITO films and silicone topcoats did not have an obvious or affirmatory effect on the sand erosion abilities, based on their brittleness and irreparable properties under sand erosion.

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3